If communication is cheap, then distributed memory can be replaced by shared memory: processors access a global, shared memory instead of using point-to-point communication. What model should be chosen?

- **Exclusive-read, exclusive-write (EREW):** a register may be read or modified by a single processor.
- **Concurrent-read, exclusive-write (CREW):** a register can be read by any number of processors, but modified by a single processor only.
- **Concurrent-read, concurrent-write (CRCW):** any register may read or modified by any number of processors.

So far we have demanded optimal parallelizations, i.e., constant efficiency. Which speedups can be obtained, if processors are cheap, i.e., if we work with a polynomial number of processors?

Are there efficiently solvable problems which do no allow strong speedups?
The Random Access Machine (RAM)

The **RAM** is a model of today's computers. A RAM is composed of:

- an input device,
- a *CPU* which stores the program and a label referring to the current command,
- a storage composed of an unbounded number of local registers, where each register stores an integer,
- an accumulator which
 - may access a register directly (by its address) or indirectly (by the address as stored in a register)
 - and perform arithmetic or boolean operations,
- and an output device.
A **PRAM** is a collection of RAM’s, where each RAM (or processor) may access a **shared memory** of an unbounded number of global registers.

- The input of length n is stored in the first n registers of the shared memory. Each processor receives also the input length n and the number of processors, which are stored in special local registers.
- All other local or global registers are initialized to be zero.
- All processors use the same program.
- Processors compute **synchronously**.

One distinguishes **EREW-PRAMs**, **CREW-PRAMs** and **CRCW-PRAMs**.

How to cope with **write conflicts**, i.e., if several processors try to write into the same register?
The most restrictive model is the **common model**: all processors writing into the same register at the same time have to write the same value.

The **arbitrary model** chooses an arbitrary processor from among the processors trying to write into a fixed register and writes its value. The PRAM program has to work correctly for all choices.

The **priority model** is the most liberal model: the processor with the smallest address wins and its value is written.

- A “common PRAM” is also an “arbitrary PRAM” and an “arbitrary PRAM” is also a “priority PRAM”.
- Does the conflict resolution scheme matter?
$p, t : \mathbb{N} \rightarrow \mathbb{N}$ are two functions.

- **EREW($p(n), t(n)$):** all languages $L \subseteq \{0, 1\}^*$ recognizable by an EREW-PRAM in time $O(t(n))$ with $O(p(n))$ processors.

- The classes **CREW($p(n), t(n)$)** and **CRCW($p(n), t(n)$)** are defined analogously.

- Nick’s class is defined as

$$\mathcal{NC} = \bigcup_{k,l \in \mathbb{N}} \text{CRCW}(n^k, (\log_2 n)^l)$$

and consists of all languages L recognizable with super-fast algorithms: poly-logarithmic time with a polynomial number of processors.
Simulate a CRCW-PRAM P with $p(n)$ processors by a message passing algorithm Q with $p(n)$ processors.

- Q uses the hypercube as communication pattern.
- The simulation setup:
 - processor ρ of P is simulated by node $v(\rho)$ of the hypercube.
 - Shared memory cells are distributed among the nodes of the hypercube via a good hash function h.
- Simulating a step of processor ρ:
 - if ρ does not access the shared memory: no problem, $v(\rho)$ has all the information it needs.
 - What to do, if ρ accesses the shared memory?
Simulating A Shared Memory Access

Use our solution of the routing problem via **randomized routing on the hypercube**.

- If ρ wants to write into or read from cell c, then $v(\rho)$ sends a message to its colleague $h(c)$ using the bit fixing method of randomized routing. If two packets “meet on the way” and
 - if both try to write into the same cell, then “**kill**” the packet coming from the processor with larger address.
 - if both try to read from the same cell, then “**stop**” the packet coming from the processor with the larger address. The surviving packets
 ★ try to get thru to their destination,
 ★ return to the sender by running their path backwards
 ★ and wake up all stopped packets.
 - With high probability, the random routing on the hypercube has no bottlenecks.

- With high probability, the CRCW-PRAM algorithm can be simulated by a message passing algorithm with the same number $p(n)$ processors and slowdown $O(\log_2 p(n)))$.

Comparing PRAMs of Different Types

- **RAM**\((t)\) is the class of all languages recognizable by a sequential random access machine in time \(t(n)\) for inputs of length \(n\). Then
\[
\text{EREW}(p(n), t(n)) \subseteq \text{CREW}(p(n), t(n)) \subseteq \text{CRCW}(p(n), t(n)) \subseteq \text{RAM}(p(n) \cdot t(n)).
\]

- We need the following facts:
 - The input for the zero-counting problem is a sorted 0/1 sequence \(A\). We have to determine the position \(i\) with \(A[i] = 0\) and \(A[i + 1] = 1\). Any EREW-PRAM requires time \(\Omega(\log_2 \frac{n}{p})\) with \(p\) processors.
 - Any CREW-PRAM algorithm requires time \(\Omega(\log_2 n)\) to compute the Boolean OR of \(n\) bits, even with an unlimited number of processors.
 - The parity function on \(n\) bits requires time \(\Omega(\frac{\log_2 n}{\log_2 \log_2 n})\) on a priority CRCW-PRAM with a polynomial number of processors.
Exclusive versus Concurrent Read

In the parallel search problem a sorted array X of n keys and an additional key y is given.

- Set $X[0] = -\infty$ and $X[n + 1] = +\infty$.
- $\text{rank}(y \mid X)$ is the position j with $X[j] < y \leq X[j + 1]$.

Determine $\text{rank}(y \mid X)$ with p processes.

1. $m = n + 1; \quad l = 0; \quad X[0] = -\infty, \quad X[m] = +\infty; \\
 \quad // \text{ The invariant } y \in [X[l], X[l + m]] \text{ will be maintained.}

(3) repeat $\lceil \log_p(n + 2) \rceil$ times
 for $i = 1$ to p pardo
 if $X[l + (i - 1) \cdot \frac{m}{p}] \leq y \leq X[l + i \cdot \frac{m}{p} - 1]$ then
 $l = l + (i - 1) \cdot \frac{m}{p}; \quad m = \frac{m}{p} - 1;$
 if $X[l + (i - 1) \cdot \frac{m}{p}] < y < X[l + (i - 1) \cdot \frac{m}{p} + 1]$ then
 $\text{rank}(y \mid X) = l + (i - 1) \cdot \frac{m}{p}; \quad \text{stop};$
No write conflicts, but there are read conflicts, since all processes have to know y and the starting point l of the next search interval.

Time $O(\log_p(n)) = O\left(\frac{\log_2 n}{\log_2 p}\right)$ for a CREW-PRAM.

How much time for EREW-PRAMs?

- We can solve the zero counting problem with the parallel search problem.
- Any EREW-PRAM requires time $\Omega(\log_2 \frac{n}{p})$ for the parallel search problem.
- For $p = \sqrt{n}$: a solution in time $O(1)$ with a CREW-PRAM algorithm, whereas time $\Omega(\log_2 n)$ is required for EREW-PRAM algorithms.
Compute the Boolean OR of \(n \) Bits \(x_1, \ldots, x_n \) with \(n \) processors.

With a ERCW-PRAM algorithm:
- processor \(i \) reads \(x_i \)
- and, if \(x_i = 1 \), writes a 1 into register 1 of the shared memory.

Time \(O(1) \) with \(n \) processors for an ERCW-PRAM, assuming the common model.

For CREW-PRAM algorithms:
- time \(\Omega(\log_2 n) \), even with an unlimited number of processors, is required
- and also sufficient, if we use the complete binary tree as communication pattern.
Computing The Minimum

Determine the minimum of \(n \) integers \(x[1], \ldots, x[n] \in \{0, \ldots, n - 1\} \).

- We work with a priority ERCW-PRAM with \(n \) processors.
 - Each processor \(i \) sets \(x[x[i]] = 1 \).
 - Hence \(x[q] = 1 \) iff \(q \) is one of the numbers to be minimized.
 - If \(x[q] = 1 \), then processor \(q \) tries to set \(x[0] = q \).
 - The processor with smallest address wins and \(x[0] \) stores the smallest value.

- Time \(O(1) \) with \(n \) processors is sufficient.

- Computing the minimum is at least as hard as computing the OR-function:
 - Flip the bits \(b[1], \ldots, b[n] \) in parallel.
 - Determine the minimum of the flipped bits.
 - The minimum is one iff the OR is zero.

- Any CREW-PRAM algorithm requires time \(\Omega(\log_2 n) \) to determine the minimum, even with an unlimited number of processors.
We have simulated a CRCW priority PRAM by a randomized message passing algorithm.

Just observe that an EREW-PRAM algorithm is at least as powerful as a message passing algorithm:
EREW-PRAMs (with p shared memory registers and p processes) and message passing algorithms are identical concepts!

$\text{CRCW}(p, t) \subseteq \text{EREW}(p, t \cdot \log_2 p)$, if we assume the priority mode for CRCW algorithms and allow randomized EREW computations.
Any priority-CRCW PRAM P with p processors and time t can be simulated by a common-CRCW PRAM Q with $O(p \cdot \log_2 p)$ processors in time $O(t)$.

- Hence the weakest resolution scheme is as fast as the strongest scheme, if the number of processors is slightly increased.

- The simulation:
 - We only have to worry about simulating a priority-write operation of P by a common-write operation of Q.
 - A processor i_P of P is simulated by the processor i_Q of Q and its $\log_2 p$ assistants.
 - A shared memory register of P is simulated by an interval of $2p - 1$ shared memory registers of Q.
The $2p - 1$ registers are used to simulate a complete binary tree of depth $\log_2 p$ with p leaves and $p - 1$ inner nodes.

If processor i_P writes into shared memory register r, then

- i_Q and its assistants write a one in the “leaf i_P” of r and in all ancestors of i_P, for which the leaf belongs to the left subtree.
- Afterwards, i_Q and its assistants check whether an ancestor, for which i_Q belongs to the right subtree, has received a one.
- If so, then i_Q has been beaten: there is a processor with smaller address trying to write into the same register.

The processors of the simulating PRAM write only ones: the common model is used.

Drawback: the number of used registers increases by a factor of p and the number of processors increases logarithmically.
Any priority CRCW PRAM requires at least $\Omega(\frac{\log_2 n}{\log \log n})$ steps to compute the XOR $x_1 \oplus \cdots \oplus x_n$ with a polynomial number of processors.

- \oplus is an associative operation and hence the prefix problem cannot be sped up beyond $O(\frac{\log_2 n}{\log \log n})$,
 - even if the number of processors is considerably increased
 - and message passing is replaced by a CRCW algorithm.

A message passing algorithm has to spend $\Omega(\log_2 n)$ steps for the prefix problem, even with an unbounded number of processors, since the OR is hard for EREW-PRAMs.
Message Passing versus PRAMs:
- Randomized Message Passing algorithms, and hence randomized EREW-PRAM algorithms, can simulate CRCW-PRAM algorithms with only a logarithmic delay.
- Message Passing and EREW-PRAMs coincide, if an EREW-PRAM with p processors uses only p shared memory registers.

Exclusiveness versus concurrency:
- CREW-PRAMS are “logarithmically faster” than EREW-PRAMs for the parallel search problem.
- ERCW-PRAMs are logarithmically faster than CREW-PRAMs when computing the minimum or computing the OR.

Write resolution schemes:
- The common-model can simulate the priority model with no delay, if the number of shared memory registers is increased by a factor of p and if the number of processors is increased logarithmically.