Monte Carlo and Markov Chain Monte Carlo methods, backtracking, branch & bound and alpha-beta pruning.

Why parallel algorithms?

- Monte Carlo and Markov chain Monte Carlo methods are parallelized by performing multiple trials,
- backtracking, branch & bound and alpha-beta pruning: very little interaction required when the search effort is partitioned among several processes.
- Most algorithms are “embarrassingly parallel”, however important issues such as dynamic load balancing and termination detection have to be dealt with.
The Monte Carlo Method

- The reliability of a randomized algorithm can be improved, if more random trials are performed.
- Normally only little interaction between different trials is required and parallelization is immediate.
- An example: approximating π.
 - The area of the circle C with radius one equals π, whereas the area of the square $S = [-1, +1]^2$ equals four.
 - If we randomly draw p points from S and if $p(C)$ is the number of points which belong to the circle C, then the ratio $\frac{p(C)}{p}$ converges to $\frac{\pi}{4}$.
 - The more trials, the better the approximation.
An Example: Evaluating Multi-Dimensional Integrals

Many deterministic integration methods operate by taking a number of samples from a function. However the number of required samples increases with the dimension:

- A spacing of $\frac{1}{N}$ within the interval $[0, 1]$ requires N points,
- to obtain a similar spacing of the cube $[0, 1]^k$, N^k grid points are required.

To approximate the integral $\int_{x \in \Omega} f(x) d^k x$ with Monte Carlo Methods:

- determine the volume $V(\Omega)$ of the integration region,
- approximate the expected value $E_\Omega(f)$ of f restricted to $\Omega \subseteq \mathbb{R}^k$ and
- observe $\int_{x \in \Omega} f(x) d^k x = V(\Omega) \cdot E_\Omega(f)$.
- How to approximate the expected value? Randomly select points $x_1, \ldots, x_M \in \Omega$ and return the estimate $\frac{\sum_{i=1}^{M} f(x_i)}{M}$.
A finite Markov chain $\mathcal{M} = (\Omega, P)$ is described by a finite set Ω of states and a matrix P of transition probabilities between states in Ω.

- $P[u, v]$ is the probability to visit $v \in \Omega$, given we currently visit $u \in \Omega$.
- $\sum_{v \in \Omega} P[u, v] = 1$ holds for all states u.

If there is a path with positive probability between any two states in Ω and if $P[x, x] > 0$ holds for all states x:

- \mathcal{M} has a unique stationary distribution π, i.e., $\pi^T \cdot P = \pi^T$ holds.
 (If \mathcal{M} is in state u with probability $\pi(u)$, then after one step \mathcal{M} is in state v with probability $\sum_{u \in \Omega} \pi(u)P[u, v] = (\pi^T \cdot P)v = \pi(v)$: \mathcal{M} stays in the stationary distribution π.)
- $\lim_{t \to \infty} P^t[u, v] = \pi(v)$ holds and the frequency with which v is visited does not depend on the starting state u.
Markov chain Monte Carlo (MCMC) methods construct a Markov chain that has a target distribution as its stationary distribution. The state of the chain after a sufficiently large number of steps is then used as a sample from the target distribution. The major issue: the time to converge against the target distribution may be quite large.
The goal: minimize a function f over some finite domain Ω.

- For any point $x \in \Omega$ let $N(x) \subseteq \Omega$ be the neighborhood of x.

- The **Metropolis algorithm** starts at some initial point $x \in \Omega$.

 - If the algorithm is currently visiting point x, then it randomly chooses a neighbor $y \in N(x)$.
 - It continues with y, if y is at least as good as x, i.e., $f(y) \leq f(x)$.
 - To escape local minima, an **uphill move**, i.e., $f(y) > f(x)$, is accepted with probability $e^{-\frac{f(y)-f(x)}{T}}$:

 the larger the “temperature” T, the higher the probability that a bad neighbor is accepted.
Interpret the points in Ω as states of a Markov chain. The transition probability from state x to a neighbor y is the probability that y is chosen and accepted.

The stationary distribution is proportional to $q_T(x) = e^{-\frac{f(x)}{T}}$.

- The smaller $f(x)$, the higher the probability of x. Great!
- For hard minimization problems the convergence against the stationary distribution is slow! Not so great.
In the Vertex Cover problem we are given an undirected graph \(G = (V, E) \). Determine a cover, i.e., a subset \(C \subseteq V \) of minimal size such that each edge has at least one endpoint in \(C \).

- Define a neighborhood: subsets \(U_1, U_2 \subseteq V \) are neighbors iff \(U_2 \) results from \(U_1 \) after inserting a node or removing a node from \(U_1 \).
- Apply the Metropolis algorithm to the empty graph, i.e., \(E = \emptyset \). Obviously the empty set is a minimal cover.
 - Assume we start with the cover \(x = V \).
 - Initially the Metropolis algorithm removes elements from its current solution.
 - If its current solution \(x \) has only few elements, then there are far more larger than smaller neighbors: the Metropolis algorithm begins to add nodes!
- Slowly increase the temperature!
Simulated Annealing

- In physical annealing a material is first heated and atoms can rearrange freely.
 - When slowly cooling down, the movement of atoms is more and more restricted until the material reaches a minimum energy state.
 - A perfect crystal with regular structure corresponds to a global minimum.
- Simulated Annealing:
 - Start with a high temperature T.
 - For any given temperature T: run the Metropolis algorithm sufficiently long and then cool down.
 - For how long do we run Metropolis? Cooling down by how much? Good questions.
- Why Simulated Annealing?
 - Simulated Annealing is applicable without much information on the problem, however the approximation performance may be poor.
 - Parallelization is easy: perform many runs in parallel.
Google assigns a page rank \(pr(w)\) to a website \(w\) via peer review: the more websites with high page rank point to \(w\) the higher \(pr(w)\).

Intention: Take the stationary distribution of the Web Markov chain as page rank.

- Does the stationary distribution exist? There should be a path with positive probability between any two states.
- Therefore Google inserts new low-probability links and connects each page \(w_1\) with any other page \(w_2\).

How to compute the stationary distribution of a transition matrix with several billions of rows and columns?

- Begin with the uniform distribution \(\pi_0\) and set \(\pi_{t+1}^T = \pi_t^T \cdot P\).

 Then \(\pi_t^T = \pi_0^T P^t\) and \(\pi = \lim_{t \to \infty} \pi_0^T \cdot P^t\) is the stationary distribution:

 \[
 \pi^T \cdot P^t = (\lim_{t \to \infty} \pi_0 \cdot P^t)^T \cdot P = \lim_{t \to \infty} \pi_0^T \cdot P^{t+1} = \lim_{t \to \infty} \pi_0^T \cdot P^t = \pi.
 \]

- Two facts help: the transition matrix is sparse and convergence against the stationary distribution is fast.
- Google computes the matrix-vector product \(\pi_t^T \cdot P\) in parallel employing several thousand PC’s.
Assume we want to determine \(\int_{x \in \Omega} f(x) d^k x \) approximately, but the variance of \(f \) is large.

Start an ensemble of “walkers” to move around the integration region randomly in the search of “high-activity” areas.

A walker checks its current area to determine a point with a considerable contribution towards the integral, respectively to determine the next area to walk into.

In particular, a Markov chain is constructed for which the integrand “corresponds” to its stationary distribution.
A generator G is a deterministic algorithm which, given a seed $x \in \{0, 1\}^n$, produces a string $G(x) \in \{0, 1\}^{p(n)}$ with $p(n) > n$.

A statistical test \mathcal{T} is a randomized algorithm which outputs zero or one and runs on inputs of length n in time polynomial in n.

G passes the test \mathcal{T} if the acceptance probability r_n of \mathcal{T}, given a truly random string of length $p(n)$, is not observably different from the acceptance probability g_n of \mathcal{T}, given a string $G(x)$.

G is a cryptographically secure pseudo random generator, provided G passes all statistical tests running in polynomial time.

r_n is not observably different from g_n iff for all $k \in \mathbb{N}$ there is a bound N_k such that $|g_n - r_n| \leq n^{-k}$ for all $n \geq N_k$.

A generator stretches a random seed into a longer string g_n. To be cryptographically secure, G cannot be differentiated from a truly random source within “reasonable” means.
The Blum-Blum-Shub Generator (BBS)

- For a seed s_0 determine the sequence $s_{i+1} = s_i^2 \mod N$, where $N = p \cdot q$ with primes $p \equiv q \equiv 3 \mod 4$.

- The BBS generator produces the pseudo-random string $G(s_0) = (s_1 \mod 2, \ldots, s_m \mod 2)$ with, say, $m = (\lceil \log_2 s_0 \rceil)^k$ for a constant k.

- The BBS generator is cryptographically secure, provided factoring of most numbers $N = p \cdot q$ — with primes $p \equiv q \equiv 3 \mod 4$ — is computationally hard.

- The BBS generator is quite expensive since we have to square in order to get one pseudo random bit.
The Linear Congruential Generator \(LC \)

- \(LC \) is defined by its modulus \(m \), its coefficient \(a \) and its offset \(b \).
- Generate a sequence \(x_i \) of numbers
 - by starting with a seed \(x_0 \) and
 - setting \(x_{i+1} = a \cdot x_i + b \mod m \).
- The good: \(LC \) is reasonably fast and has large periods, if \(m \) is a sufficiently large prime number.
- The bad: \(LC \) is not cryptographically secure. It should not be used when high quality pseudo random numbers are required.
- Surpassed in practical applications by the Mersenne Twister.
The Mersenne Twister MT 19937

- Its recurrence expands the seed each time by 32 bits and is of the form $x_n = x_{n-227} \oplus (x_{n-624}^U \circ x_{n-623}^L) \cdot A$.
 - All sequence numbers x_n are 32-bit words.
 - x^U_m is the leading bit of x_m and x^L_m is the string consisting of the trailing 31 bits of x_m.
 - A is a 32×32 bit matrix with a 31×31 identity matrix in the upper left. Its last row is 9908B0DF in hexadecimal.

- MT 19937 requires a seed of $19937 = 32 \cdot 623 + 1$ bits, namely 623 strings of length 32 plus the leading bit of x_0.

- **The good:** MT is a very fast generator with the gigantic period length $2^{19937} - 1$. (Its period length is a Mersenne prime, explaining its name.) It is part of the GNU scientific library.

- **The bad:** it does pass some important statistical tests, but there is no thorough study.
Depth-First Search (DFS)

- DFS is a recursive method. When visiting a node \(v \) for the first time:
 - mark the node as “visited” and
 - recursively visit all neighbors which are not marked as “visited”.

- DFS visits all nodes in an undirected connected graph. Its advantage is its memory consumption which is bounded by the length of a longest path.

- DFS for graphs is hard to parallelize as we show later, but it is easy for trees.
In a decision problem we are given a set U of potential solutions and we have to determine whether U contains a true solution.

- For instance let α be a conjunction of disjunctions. U is the set of all truth assignments of the variables of α.
- We have to determine whether U contains a true solution, namely an assignment satisfying α.
The Branching Operator

- Backtracking searches for a solution by trying to construct a true solution step by step from partial solutions.
- It begins with the partial solution \(r = U \), which corresponds to the set of all potential solutions.
- Then a **branching operator** \(B \) is applied to \(r \) which returns a partition \(r_1 \cup \cdots \cup r_k \) of \(r \).
- The branching operator \(B \) defines the backtracking tree \(T \):
 - Initially \(T \) consists only of the root \(r \). Then we attach children \(r_1, \ldots, r_k \) to \(r \) to mimic the partition \(r = r_1 \cup \cdots \cup r_k \).
 - In general, if \(B \) is applied to a node \(v \) which is not a singleton set, then we obtain a partition \(v = v_1 \cup \cdots \cup v_l \) and correspondingly make \(v_1, \ldots, v_l \) children of \(v \).
Backtracking tries to generate only a very small portion T^* of T.

- Namely, whenever Backtracking finds that a node v does not have a true solution, it disqualifies v. v will not be expanded any further.
- Often backtracking generates T^* in a depth first search manner:
 - if node v is currently inspected and if v can be disqualified, then backtracking “backs up” and continues with the parent of v.
 - Otherwise backtracking continues recursively with a not yet inspected child of v.
- How to determine whether a node can be disqualified?
Let $\alpha(x_1, \ldots, x_n)$ be a conjunction of disjunctions. Determine whether α is satisfiable.

- In our approach partial solutions correspond to partial assignments. To be specific, assume that we already have assigned truth values to all variables x_j for $j \in J$.
 - We determine a disjunction d of minimal size and choose an arbitrary variable x_i appearing in d.
 - The branching operator B then produces two partial solutions by additionally setting $x_i = 0$ respectively $x_i = 1$.

- Why minimal size? To allow for a faster falsification of partial assignments. We run the following test after fixing the value of x_i:
 - we look for any disjunction with exactly one unspecified variable, fix the variable appropriately and continue looking for disjunctions with exactly one unspecified variable.
 - If some disjunction is falsified during this process, then the partial assignment is doomed and we disqualify it.
Parallel Backtracking

- Implement a parallel version of depth-first search for trees.
 - A master process determines the “top portion” \(T^* \) of the tree \(T \) and distributes the leaves of \(T^* \) among the processes.
 - Each process runs DFS for its nodes.

- Implementation issues:
 - What to do when a process runs out of work? We discuss load balancing later.
 - A silly question: How to determine whether all processes are done?
 - if a process replies that it is idle, then this process may receive work soon afterwards.
 - We discuss the general problem of termination detection later.
Our goal is to minimize a function f over a finite domain Ω.

- Branch & Bound again utilizes the branching operator B, but does not differentiate between potential and true solutions: we look for a cheapest solution.
- As for backtracking the branching operator defines a tree \mathcal{T}.
- The crucial requirement of Branch & Bound is the existence of a lower bound α with

$$
\alpha(v) \leq \min\{f(x) \mid x \in \Omega \text{ is a leaf in the subtree of } \mathcal{T} \text{ with root } v\}.
$$
In the traveling salesman problem (TSP) we are given a set of nodes in the plane and are asked to compute a path of shortest length traversing all nodes.

- A somewhat related, but computationally far easier problem is the minimum spanning tree problem (MST):
 - Given is an undirected graph G with weighted edges.
 - Determine a subtree T of G such that its sum of edge weights is minimal.

- What is the relation between TSP and MST?
 - If a path P of length L traverses all nodes, then we have found a spanning tree of weight L, namely the path P.
 - We have found a lower bound for all possible TSP-paths and the lower bound is computable within reasonable resources.
Branch & Bound begins by constructing a “good” initial solution x with the help of a heuristic and sets $\beta = f(x)$.

Initially only the root of T is unexplored.

In its general step Branch & Bound has computed a set U of unexplored nodes and it chooses an unexplored node $v \in U$ to explore.

1. If $\alpha(v) \geq \beta$, then no solution in the subtree of v is any better than the best solution found so far. Branch & Bound disqualifies v.
2. If v is a leaf corresponding to a solution x, then β is updated by $\beta = \min\{\beta, f(x)\}$.
3. If v is not a leaf, then all children of v are generated and added to the set U of unexplored nodes.
A master process determines the top portion of the branch & bound tree and communicates it to the remaining processes.

Each process i works on its subproblem by representing its set U_i of unexplored nodes by its own private priority queue.

So far no communication is required.

- If a process runs out of work, then apply load balancing schemes as for backtracking.
- Each process broadcasts a better upper bound immediately.
- To obtain good upper bounds as fast as possible, some parallel implementations let processes also exchange promising unexplored nodes.
- Two players Alice and Bob play a game.
- Alice begins and the two players alternate.
- The game ends after finitely many moves with a payment to Alice: for instance with payments -1, 0 or 1
 - Alice wins, if she receives a payment of 1 and
 - Bob wins, if Alice receives a payment of -1.

Determine a strategy for Alice that guarantees her the highest possible payment.

Any such game has a **game tree** B.
- Its root r corresponds to the initial configuration and is labeled with Alice.
- For any node v of B and for any possible move in v: generate a child w of v and label it with the opposing player.
- If the game is decided in v, then v becomes a leaf and we label v with the payment $A(v)$ to Alice.
Assume that we traverse B in a depth-first manner and that we reached a node v belonging to Alice.

- Let u be an ancestor of v belonging to Bob and assume that Bob can restrict Alice to payments of at most β, when reaching u.

- If Alice can enforce, for some child w of v, a payment of at least $\alpha \geq \beta$, then Bob does not profit from reaching v. Moreover Bob can prevent Alice from reaching v.

The evaluation of v can be stopped!

The invariant: for any node v work with two parameters α and β.

- α is the highest score for Alice detected so far for an ancestor of v belonging to Alice.
- β is the lowest score for Alice detected so far for an ancestor of v belonging to Bob.
The first call involves the root with $\alpha = -\infty, \beta = +\infty$.

(1) If v is a max-leaf, then return $\alpha = \max\{\alpha, A(v)\}$.
If v is a min-leaf, then return $\beta = \min\{\beta, A(v)\}$.
// We make sure that the invariant holds for v.

(2) Otherwise work recursively.
If v is a max-node, then

- $\text{Max} = \alpha$,
- traverse all children w of v: if $\text{alpha-beta}(w, \alpha, \beta) \geq \beta$, then stop the traversal and return α.
- // Bob can prevent Alice from reaching v.
- Otherwise $\text{Max} = \max\{\text{Max}, \text{alpha-beta}(w, \alpha, \beta)\}$.
- // Alice makes her best move.
- Return $\alpha = \text{Max}$.

If v is a min-node, then

- $\text{Min} = \beta$,
- traverse all children w of v: if $\alpha \geq \text{alpha-beta}(w, \alpha, \beta)$, then stop the traversal and return β.
- // Alice can prevent Bob from reaching v.
- Otherwise $\text{Min} = \min\{\text{Min}, \text{alpha-beta}(w, \alpha, \beta)\}$.
- // Bob makes his best move.
- Return $\beta = \text{Min}$.
Properties of Alpha-Beta Pruning

For the subtree with root \(v \), let \(A \) be the largest payment reachable by Alice. Assume that \(\alpha \) and \(\beta \) are obtained before visiting \(v \).

(a) If \(v \) belongs to Alice, then \(\max\{\alpha, A\} \) is returned, provided \(A \leq \beta \).
(b) If \(v \) belongs to Bob, then \(\min\{\beta, A\} \) is returned, provided \(\alpha \leq A \).

Let \(B \) be a complete \(b \)-ary game tree of depth \(d \).

- There is an evaluation of \(B \) by alpha-beta which inspects at most
 \[\text{opt} = b^{\lceil d/2 \rceil} + b^{\lfloor d/2 \rfloor} - 1 \] nodes.

- In the best case, alpha-beta reduces the search effort from \(\Theta(b^d) \) to \(\Theta(\sqrt{b^d}) \): in comparison with a brute force evaluation the number of simulated moves is doubled.

- The best case occurs in practical applications, if depth-first search uses a good heuristic to pick the next move.
Parallel Alpha-Beta Pruning

We have to find a trade-off between the search overhead (the increase in the number of inspected nodes in comparison with a sequential implementation) and the communication overhead.

- Assume the game tree \mathcal{G} is the complete b-ary tree of depth d.
- If a parallel alpha-beta pruning implementation with $p = b$ evaluates all children of the root in parallel, then each process inspects $\text{opt}_{d-1} = b^{\lceil(d-1)/2\rceil} + b^{\lfloor(d-1)/2\rfloor} - 1$ nodes in its subtree.
- If d is even, then $\text{opt}_{d-1} = b^{\lceil d/2 \rceil} + b^{\lfloor d/2 \rfloor} / b - 1 \geq b^{\lceil d/2 \rceil} \geq \text{opt}_d / 2$ and the best achievable speedup is two!
- The search overhead is $p \cdot \text{opt}_{d-1} - \text{opt}_d \geq p \cdot \text{opt}_d / 2 - \text{opt}_d = (p/2 - 1) \cdot \text{opt}_d$.
How to decrease the search overhead?

- Evaluate the leftmost child (the eldest brother) before processes work on the remaining siblings (the younger brothers).
- Even if the leftmost child is not optimal, its \((\alpha, \beta)\) value may help to narrow the search windows for its siblings.
- When good moves are explored first,
 - it pays to throw all computing power at the subtree of the leftmost child
 - and then to process siblings in parallel.
- We describe two parallel implementations based on YBWC.
Partial Synchronization

- A leftmost child \(v \) is a synchronization node, whenever a parallel implementation enforces YBWC by exploring \(v \) before its siblings.
- In many implementations all nodes of the leftmost path \(\mathcal{P} \) of \(G \) are synchronization nodes.
 - Only one process is at work when the deepest node of \(\mathcal{P} \) is evaluated and more processes enter only after higher nodes of \(\mathcal{P} \) are reached.
 - YBWC keeps the search overhead low at the expense of unbalanced workloads and a higher communication overhead.
- If the computation progresses, there is sufficient work and load balancing becomes an important issue:
 - Idle processes send work requests.
 - If a process \(q \) receives a request from process \(p \), it checks its current depth-first path \(\mathcal{P}_d \) and chooses a sibling \(s \) of a node of \(\mathcal{P}_d \). It sends \(s \) to \(p \) and enters a master-slave relationship with slave \(p \).
 - The slave \(p \) may become a master after receiving a work request.
Asynchronous parallel hierarchical iterative deepening (APHID)

- APHID uses fixed master-slave relationships. The master explores the top levels, assigns “leaves” to slaves and continuously repeats his evaluations of the top levels:
 - accepting updates from the slaves,
 - performing heuristic evaluations of “open” leaves,
 - informing slaves to terminate a task,
 - performing load balancing by reallocating tasks from overworked to moderately busy processes,
 - and informing a slave about the (changed) relevance of its leaves. (The relevance of a leaf is determined by YBWC and the search depth achieved so far for the leaf: the smaller the search depth the higher the priority, thus allowing the leaf to catch up.)

- Instead of a single master, a master-slave hierarchy may be used. Thus the communication overhead should shrink.

- APHID has a considerable search overhead. However the masters assign higher relevance to leftmost leaves.