Information
Solutions in english or german are fine.

10.1. Problem (10) \textit{Better splitters for Sample-Sort}

We consider the following procedure to determine a set of \(p - 1 \) good splitters. After sorting its \(\frac{p}{p'} \) keys a process selects keys in position \(i \cdot \frac{p}{p'} \) for \(i = 0, \ldots, p - 1 \) as its sample and sends this sample to process 1, who then sorts all \(p^2 \) keys. Then process 1 computes the final sample \(S \) by selecting all keys in positions \(i \cdot p \) for \(i = 1, \ldots, p - 1 \) and broadcasts \(S = \{ s_1 < s_2 < \ldots < s_{p-1} \} \).

Show that at most \(\frac{2n}{p} \) keys are smaller than \(s_1 \) (resp. in between \(s_{k-1} \) and \(s_k \), or larger than \(s_{p-1} \)).

10.2. Problem (10+10) \textit{Odd-Even Merge}

Let \(m \) be a power of two. For a sequence \(x = (x_0, \ldots, x_{m-1}) \) let \(\text{even}(x) = (x_0, x_2, x_4, \ldots, x_{m-2}) \) and \(\text{odd}(x) = (x_1, x_3, x_5, \ldots, x_{m-1}) \) be the subsequences of even- and odd-numbered components of \(x \).

Assume that \(x \) and \(y \) are sorted sequences of length \(m \) each. To merge \(x \) and \(y \), odd-even Merge recursively merges

- \(\text{even}(x) \) and \(\text{odd}(y) \) to obtain the sorted sequence \(u = (u_0, u_1, \ldots, u_{m-1}) \) and
- \(\text{odd}(x) \) and \(\text{even}(y) \) to obtain the sorted sequence \(v = (v_0, v_1, \ldots, v_{m-1}) \).

Finally odd-even merge computes the output sequence \(w = (w_0, \ldots, w_{2m-1}) \) from \(u \) and \(v \) as follows: in parallel for \(0 \leq i \leq m - 1 \), if \(u_i \leq v_i \) then set \(w_{2i} = u_i, w_{2i+1} = v_i \) and otherwise \(w_{2i} = v_i, w_{2i+1} = u_i \).

(a) Show with the 0-1 principle that odd-even merge works correctly.

(b) Assume that consecutive intervals of \(x \) and \(y \) of length \(m/2q \) each---are distributed among \(q \) processes. Show how to implement odd-even merge in computing time \(O\left(\frac{m}{q} \cdot \log_2 2q\right) \) and communication time \(O\left(\frac{m}{q} \cdot \log_2 q\right) \).