Information
Solutions in english or german are fine.

4.1. Problem (10)
Assume that matrix multiplication of two $n \times n$ matrices runs in time $O(\frac{n^3}{p})$ on p processors.

(a) Show how to compute the power A^{2^k} of an $n \times n$ matrix A in time $O(\frac{n^3}{p} \cdot k)$ with p processors.

(b) Show how to compute the power A^K of an $n \times n$ matrix A in time $O(\frac{n^3}{p} \cdot \log_2 K)$ with p processors.

(c) The sequence $(x_n \mid n \in \mathbb{N}_0)$ is described by the recurrence

$$x_0 = 1$$

$$x_m = a_1 \cdot x_{m-1} + a_2 \cdot x_{m-2} + \cdots + a_r \cdot x_{m-r}.$$

Show how to determine x_n in time $O(\frac{n^3}{p} \cdot \log_2 n)$ with p processors.

Hint: Construct a $r \times r$ matrix M and a vector v and show a connection between x_n and $M^n \cdot v$

4.2. Problem (10)
In matrix multiplication entries are computed according to the formula $c_{i,j} = \sum_k a_{i,k} \cdot b_{k,j}$. In some applications similar expressions appear, but with addition and multiplication replaced by other operations.

(a) The transitive closure of a directed graph $G = (V, E)$ is the directed graph $G^* = (V, E^*)$, where we insert an edge (i, j) into E^* whenever there is a path in G from i to j. Show how to determine the transitive closure with the help of matrix multiplication.

Hint: Assume that G has n vertices and let A be the adjacency matrix of G with

$$A[i,j] := \begin{cases}
1 & (i, j) \text{ is an edge of } G, \\
0 & \text{otherwise.}
\end{cases}$$

Interpret the power A^{n-1} after replacing addition by \lor and multiplication by \land.

(b) We are given p processors. Implement your solutions for (a), assuming that p processors are available. Determine running time and efficiency, if the sequential time complexity is $\Theta(n^3)$ for graphs with n vertices.
4.3. Problem (10)

In Problem 4.2 we discussed how to use matrix multiplication in order to determine the transitive closure of a directed graph. Here we discuss the shortest path problem: we are given a directed graph G with n vertices and non-negative weights $w_{i,j}$ for its edges (i,j). We have to determine the length of the shortest path for any pair of vertices.

We define the matrix

$$A[i,j] := \begin{cases} w_{i,j} & \text{if } (i,j) \text{ is an edge of } G, \\ \infty & \text{otherwise}. \end{cases}$$

Which operations should replace addition and multiplication, so that $A^{n-1}[i,j] = \text{the length of a shortest path from } i \text{ to } j$?