Assignment 5

Exercise 5.1. (8)
Making random sources uniformly distributed

Our task is to build a random source that outputs the bits 0 and 1 with \(\text{prob}(0) = \text{prob}(1) = \frac{1}{2} \). We have access to another random source \(S \) that outputs \(a \) or \(b \) with independent probabilities \(\text{prob}(a) \) and \(\text{prob}(b) = 1 - \text{prob}(a) \) that are unknown to us.

State an algorithm that does the job and that does not consume more than an expected number of \((\text{prob}(a) \cdot \text{prob}(b))^{-1} \) symbols of \(S \) between two output bits. Prove its correctness.

Exercise 5.2. (8)
Fingerprinting

Two processors \(A, B \) with inputs \(a \in \{0, 1\}^n \) (for \(A \)) and \(b \in \{0, 1\}^n \) (for \(B \)) want to decide whether \(a = b \). \(A \) does not know \(B \)'s input and vice versa.

\(A \) can send a message \(m(a) \in \{0, 1\}^* \) which \(B \) can use to decide \(a = b \). The communication and computation rules are called a _protocol_.

- Show that every deterministic protocol must satisfy \(|m(a)| \geq n \).
- State a randomized protocol that uses only \(O(\log_2 n) \) Bits. The protocol should always accept if \(a = b \) and accept with probability at most \(\frac{1}{n} \) otherwise. Prove its correctness.

Exercise 5.3. (8)
Continuous uniform samples

A source provides a stream of items \(x_1, x_2, \ldots \). At each step \(n \) we want to save a random sample \(S \subseteq \{(x_i, i)|1 \leq i \leq n\} \) of size \(k \), i.e. \(S \) should be a uniformly chosen sample from all \(\binom{n}{k} \) possible samples consisting of seen items. So at each step \(n \geq k \) we must decide whether to add the next item to \(S \) or not. If so we must also decide which of the current items to remove from \(S \).

State an algorithm for the problem. Prove its correctness.