Effiziente Algorithmen
Summer term 2012
Prof. Dr. Georg Schnitger, Bert Besser
Arbeitsgruppe Theoretische Informatik, Institut für Informatik

Assignment 4

Take home: 05/07/2012
Submit: 05/14/2012

Note: The maximal score for this assignment is 16. Additional points will be added to the total score of all assignments.

Exercise 4.1. (8)
Bit fixing on hypercubes

We look at a particular packet p while executing the bit fixing strategy. Let P be the set of packets other than p whose paths have at least one edge in common with p’s path.

Show that the total number of steps that p has to wait in one of the queues on its path is at most $|P|$.

Exercise 4.2. (8)
Fingerprinting

Given three matrices $A, B, C \in \mathbb{Z}^{n \times n}$ we want to test whether $AB \neq C$. Assume that the arithmetic operations $+$ and \cdot take constant time when applied to numbers from \mathbb{Z}.

State an algorithm with one-sided error that runs in $O(n^2)$ time and prove its correctness.

Hint: Use the fact that for any $x \in \mathbb{Z}^n$ at most half of the vectors $s \in S = \{0, 1\}^n$ satisfy $xs = 0$, where xs denotes the scalar product $\sum_{i=1}^{n} x_is_i$.

Exercise 4.3. (8)
The probabilistic method

Consider a board of $n \times n$ cells, where $n = 2k, k \geq 2$. Each of the numbers from $S = \{1, \cdots, \frac{n^2}{2}\}$ is written to two cells so that each cell contains exactly one number.

Show that n cells $c_{i,j}$ can be chosen with one cell per row and one cell per column such that no pair of cells contains the same number.

Hint: What about random permutations?